Extremal Polynomials in Stratified Groups
نویسندگان
چکیده
We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal subriemannian geodesics in stratified nilpotent Lie groups. They satisfy a set of remarkable structure relations that are used to integrate the adjoint equations.
منابع مشابه
Some polynomial extremal problems which emerged in the twentieth century
Most of the “extremal problems” of Harmonic (or Fourier) Analysis which emerged before the year 2000 were actually born in the twentieth century, and their emergences were scattered throughout that century, including the two world war periods. A great many of these problems pertain to polynomials, trigonometric polynomials and (finite) exponential sums. Writing a reasonably complete monograph o...
متن کاملOrthogonal Polynomials and Quadratic Extremal Problems
The purpose of this paper is to analyse a class of quadratic extremal problems defined on various Hilbert spaces of analytic functions, thereby generalizing an extremal problem on the Dirichlet space which was solved by S.D. Fisher. Each extremal problem considered here is shown to be connected with a system of orthogonal polynomials. The orthogonal polynomials then determine properties of the ...
متن کاملNonnegative Trigonometric Polynomials
An extremal problem for the coefficients of sine polynomials, which are nonnegativein [0, π], posed and discussed by Rogosinski and Szegő is under consideration. An analog of the Fejér-Riesz representation of nonnegativegeneral trigonometric and cosine polynomials is proved for nonnegativesine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szegő are obtained ex...
متن کاملApplications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems
We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to d...
متن کاملAsymptotic of extremal polynomials in the complex plane
We study the zero location and asymptotic zero distribution of sequences of polynomials which satisfy an extremal condition with respect to a norm given on the space of all polynomials.
متن کامل